Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077436

RESUMO

The most commonly used antiviral treatment against hepatitis C virus is a combination of direct-acting antivirals (DAAs) and ribavirin (RBV), which leads to a shortened duration of therapy and a sustained virologic response until 98%. Nonetheless, several dose-related side effects of RBV could limit its applications. This study aims to measure the urinary concentration of RBV and its main metabolites in order to evaluate the drug metabolism ability of HCV patients and to evaluate the adverse effects, such as anemia, with respect to RBV metabolite levels. RBV and its proactive and inactive metabolites were identified and quantified in the urine of 17 HCV males with severe liver fibrosis using proton nuclear magnetic resonance (1H-NMR) at the fourth week (TW4) and at the twelfth week of treatment (EOT). Four prodrug urinary metabolites, including RBV, were identified and three of them were quantified. At both the TW4 and EOT stages, six HCV patients were found to maintain high concentrations of RBV, while another six patients maintained a high level of RBV proactive metabolites, likely due to nucleosidase activity. Furthermore, a negative correlation between the reduction in hemoglobin (Hb) and proactive forms was observed, according to RBV-triphosphate accumulation causing the hemolysis. These findings represent a proof of concept regarding tailoring the drug dose in relation to the specific metabolic ability of the individual, as expected by the precision medicine approach.


Assuntos
Hepatite C Crônica , Hepatite C , Antivirais/efeitos adversos , Quimioterapia Combinada , Hepacivirus , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Humanos , Masculino , Medicina de Precisão , Proteínas Recombinantes/farmacologia , Ribavirina/efeitos adversos , Resultado do Tratamento
2.
Front Mol Biosci ; 8: 688440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671642

RESUMO

The development of the human gut microbiota is characterized by a dynamic sequence of events from birth to adulthood, which make the gut microbiota unique for everyone. Its composition and metabolism may play a critical role in the intestinal homeostasis and health. We propose a study on a single mother-infant dyad to follow the dynamics of an infant fecal microbiota and metabolome changes in relation to breast milk composition during the lactation period and evaluate the changes induced by introduction of complementary food during the weaning period. Nuclear Magnetic Resonance (NMR)-based metabolomics was performed on breast milk and, together with 16S RNA targeted-metagenomics analysis, also on infant stool samples of a mother-infant dyad collected over a period running from the exclusive breastfeeding diet to weaning. Breast milk samples and neonatal stool samples were collected from the 4th to the 10th month of life. Both specimens were collected from day 103 to day 175, while from day 219-268 only stool samples were examined. An exploratory and a predictive analysis were carried out by means of Common component and specific weight analysis and multi-block partial least squares discriminant analysis, respectively. Stools collected during breastfeeding and during a mixed fruit/breastfeeding diet were characterized by high levels of fucosyl-oligosaccharides and glycolysis intermediates, including succinate and formate. The transition to a semi-solid food diet was characterized by several changes in fecal parameters: increase in short-chain fatty acids (SCFAs) levels, including acetate, propionate and butyrate, dissapearance of HMOs and the shift in the community composition, mainly occurring within the Firmicutes phylum. The variations in the fecal metabolome reflected the infant's diet transition, while the composition of the microbiota followed a more complex and still unstable behavior.

3.
Biomed Pharmacother ; 143: 112217, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560544

RESUMO

Hepatitis C virus (HCV) infection induces a long-term inflammatory response and oxidative-stress in the liver microenvironment, leading to hepatic fibrosis and metabolic alterations. Direct-acting-antiviral-agents (DAAs) induce HCV-clearance, even though liver damage is only partially restored. In this context, understanding the impact of viral-eradication on liver metabolic activities could allow optimizing the metabolic care of the patient. The present prospective longitudinal study aims at characterizing the urinary metabolic profile of HCV-induced severe liver fibrosis and the metabolic changes induced by DAAs and HCV-clearance by nuclear magnetic resonance-based metabolomics. The urinary metabolic profile of 23 HCV males with severe liver fibrosis and 20 age-matched healthy-controls was analyzed by NMR-based-metabolomics before starting DAAs, at the end-of-therapy, after one and three months of follow-up. The urinary metabolic profile of patients with severe liver fibrosis was associated to pseudouridine, hypoxanthine, methylguanidine and dimethylamine, highlighting a profile related to oxidative damage, and to tyrosine and glutamine, related to a decreased breakdown of aromatic aminoacids and ammonia detoxification, respectively. 1-methylnicotinamide, a catabolic intermediate of nicotinamide-adenine-dinucleotide, was significantly increased in HCV-patients and restored after HCV-clearance, probably due to the reduced hepatic inflammation. 3-hydroxy-3-methylbutyrate, an intermediate of leucine-catabolism which was permanently restored after HCV-clearance, suggested an improvement of skeletal muscle protein synthesis. Finally, 3-hydroxyisobutyrate and 2,3-dihydroxy-2-methylbutyrate, intermediates of valine-catabolism, glycine and choline increased temporarily during therapy, resulting as potential biomarkers of DAAs systemic effects.


Assuntos
Antivirais/uso terapêutico , Hepatite C/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Metaboloma , Metabolômica , Idoso , Biomarcadores/urina , Hepatite C/diagnóstico , Hepatite C/urina , Hepatite C/virologia , Humanos , Hidroxibutiratos/urina , Cirrose Hepática/diagnóstico , Cirrose Hepática/urina , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade , Niacinamida/análogos & derivados , Niacinamida/urina , Valor Preditivo dos Testes , Espectroscopia de Prótons por Ressonância Magnética , Índice de Gravidade de Doença , Resposta Viral Sustentada , Fatores de Tempo , Resultado do Tratamento , Urinálise
4.
Foods ; 10(8)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34441664

RESUMO

Red beetroot (RB) is a well-known health-promoting food consumed worldwide. RB is commonly used in food processing and manufacturing thanks to the high content of components that can also be employed as natural coloring agents. These bioactive molecules vary their concentration depending on beetroot seasonality, harvest time and climate conditions. The first objective of this study was to evaluate the variation of the RB phytochemical profile related to the root development during three different harvest times, using an 1H-NMR-based metabolomic approach. Changes of carbohydrates and secondary metabolite concentrations were observed from July to September. Secondly, we compared the metabolic profiles of the final processed beet juices in three different production years to observe the effect of climate conditions on the RB's final product metabotype. A PCA analysis performed on juice extracts showed that production years 2016 and 2017 were characterized by a high content of choline and betaine, while 2018 by a high content of amino acids and dopamine and a low content of inorganic nitrates. This study suggests that the harvest time and roots growth conditions could be used to modulate the RB phytochemical profile, according to the final requirements of use, food or coloring agent source.

5.
Liver Int ; 41(6): 1320-1334, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713524

RESUMO

BACKGROUND & AIM: Sarcopenia is frequent in cirrhosis and is associated with unfavourable outcomes. The role of the gut-liver-muscle axis in this setting has been poorly investigated. The aim of this study was to identify gut microbiota, metabolic and inflammatory signatures associated with sarcopenia in cirrhotic patients. METHODS: Fifty cirrhotic patients assessed for the presence of sarcopenia by the quantification of muscle mass and strength were compared with age- and sex-matched controls. A multiomic analysis, including gut microbiota composition and metabolomics, serum myokines and systemic and intestinal inflammatory mediators, was performed. RESULTS: The gut microbiota of sarcopenic cirrhotic patients was poor in bacteria associated with physical function (Methanobrevibacter, Prevotella and Akkermansia), and was enriched in Eggerthella, a gut microbial marker of frailty. The abundance of potentially pathogenic bacteria, such as Klebsiella, was also increased, to the detriment of autochthonous ones. Sarcopenia was associated with elevated serum levels of pro-inflammatory mediators and of fibroblast growth factor 21 (FGF21) in cirrhotic patients. Gut microbiota metabolic pathways involved in amino acid, protein and branched-chain amino acid metabolism were up-regulated, in addition to ethanol, trimethylamine and dimethylamine production. Correlation networks and clusters of variables associated with sarcopenia were identified, including one centred on Klebsiella/ethanol/FGF21/Eggerthella/Prevotella. CONCLUSIONS: Alterations in the gut-liver-muscle axis are associated with sarcopenia in patients with cirrhosis. Detrimental but also compensatory functions are involved in this complex network.


Assuntos
Fragilidade , Microbioma Gastrointestinal , Sarcopenia , Humanos , Cirrose Hepática/complicações
6.
Front Bioeng Biotechnol ; 9: 628719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681164

RESUMO

Polyhydroxyalkanoates (PHAs) production at pilot scale has been recently investigated and carried out exploiting different process configurations and organic wastes. More in detail, three pilot platforms, in Treviso (North-East of Italy), Carbonera (North-East of Italy) and Lisbon, produced PHAs by open mixed microbial cultures (MMCs) and different organic waste streams: organic fraction of municipal solid waste and sewage sludge (OFMSW-WAS), cellulosic primary sludge (CPS), and fruit waste (FW), respectively. In this context, two stabilization methods have been applied, and compared, for preserving the amount of PHA inside the cells: thermal drying and wet acidification of the biomass at the end of PHA accumulation process. Afterward, polymer has been extracted following an optimized method based on aqueous-phase inorganic reagents. Several PHA samples were then characterized to determine PHA purity, chemical composition, molecular weight, and thermal properties. The polymer contained two types of monomers, namely 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) at a relative percentage of 92.6-79.8 and 7.4-20.2 w/w, respectively, for Treviso and Lisbon plants. On the other hand, an opposite range was found for 3HB and 3HV monomers of PHA from Carbonera, which is 44.0-13.0 and 56.0-87.0 w/w, respectively. PHA extracted from wet-acidified biomass had generally higher viscosity average molecular weights (M v ) (on average 424.8 ± 20.6 and 224.9 ± 21.9 KDa, respectively, for Treviso and Lisbon) while PHA recovered from thermally stabilized dried biomass had a three-fold lower M v .

7.
Microorganisms ; 8(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036309

RESUMO

Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children. Herein, we evaluated the relationship between the gut microbiome (GM) and disease phenotype by an integrated omics fused approach. In a multicenter, observational cohort study, stools from Italian JIA patients were collected at baseline, active, and inactive disease stages, and their GM compared to healthy controls (CTRLs). The microbiota metabolome was analyzed to detect volatile- and non-volatile organic compounds (VOCs); the data were fused with operational taxonomic units (OTUs) from 16S RNA targeted-metagenomics and classified by chemometric models. Non-VOCs did not characterize JIA patients nor JIA activity stages compared to CTRLs. The core of VOCs, (Ethanol, Methyl-isobutyl-ketone, 2,6-Dimethyl-4-heptanone and Phenol) characterized patients at baseline and inactive disease stages, while the OTUs represented by Ruminococcaceae, Lachnospiraceae and Clostridiacea discriminated between JIA inactive stage and CTRLs. No differences were highlighted amongst JIA activity stages. Finally, the fused data discriminated inactive and baseline stages versus CTRLs, based on the contribution of the invariant core of VOCs while Ruminococcaceae concurred for the inactive stage versus CTRLs comparison. In conclusion, the GM signatures enabled to distinguish the inactive disease stage from CTRLs.

8.
Hepatology ; 65(2): 451-464, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27028797

RESUMO

There is evidence that nonalcoholic fatty liver disease (NAFLD) is affected by gut microbiota. Therefore, we investigated its modifications in pediatric NAFLD patients using targeted metagenomics and metabolomics. Stools were collected from 61 consecutive patients diagnosed with nonalcoholic fatty liver (NAFL), nonalcoholic steatohepatitis (NASH), or obesity and 54 healthy controls (CTRLs), matched in a case-control fashion. Operational taxonomic units were pyrosequenced targeting 16S ribosomal RNA and volatile organic compounds determined by solid-phase microextraction gas chromatography-mass spectrometry. The α-diversity was highest in CTRLs, followed by obese, NASH, and NAFL patients; and ß-diversity distinguished between patients and CTRLs but not NAFL and NASH. Compared to CTRLs, in NAFLD patients Actinobacteria were significantly increased and Bacteroidetes reduced. There were no significant differences among the NAFL, NASH, and obese groups. Overall NAFLD patients had increased levels of Bradyrhizobium, Anaerococcus, Peptoniphilus, Propionibacterium acnes, Dorea, and Ruminococcus and reduced proportions of Oscillospira and Rikenellaceae compared to CTRLs. After reducing metagenomics and metabolomics data dimensionality, multivariate analyses indicated a decrease of Oscillospira in NAFL and NASH groups and increases of Ruminococcus, Blautia, and Dorea in NASH patients compared to CTRLs. Of the 292 volatile organic compounds, 26 were up-regulated and 2 down-regulated in NAFLD patients. Multivariate analyses found that combination of Oscillospira, Rickenellaceae, Parabacteroides, Bacteroides fragilis, Sutterella, Lachnospiraceae, 4-methyl-2-pentanone, 1-butanol, and 2-butanone could discriminate NAFLD patients from CTRLs. Univariate analyses found significantly lower levels of Oscillospira and higher levels of 1-pentanol and 2-butanone in NAFL patients compared to CTRLs. In NASH, lower levels of Oscillospira were associated with higher abundance of Dorea and Ruminococcus and higher levels of 2-butanone and 4-methyl-2-pentanone compared to CTRLs. CONCLUSION: An Oscillospira decrease coupled to a 2-butanone up-regulation and increases in Ruminococcus and Dorea were identified as gut microbiota signatures of NAFL onset and NAFL-NASH progression, respectively. (Hepatology 2017;65:451-464).


Assuntos
Microbioma Gastrointestinal/genética , Hepatopatia Gordurosa não Alcoólica/microbiologia , Obesidade/microbiologia , Adolescente , Análise de Variância , Estudos de Casos e Controles , Criança , Fígado Gorduroso/microbiologia , Fígado Gorduroso/fisiopatologia , Feminino , Humanos , Masculino , Análise Multivariada , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/fisiopatologia , Pediatria , Proteogenômica/métodos , Valores de Referência , Sensibilidade e Especificidade
9.
Nat Prod Res ; 31(7): 765-772, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27712103

RESUMO

The metabolic profiling of pistachio (Pistacia vera) aqueous extracts from two different cultivars, namely 'Bianca' and 'Gloria', was monitored over the months from May to September employing high field NMR spectroscopy. A large number of water-soluble metabolites were assigned by means of 1D and 2D NMR experiments. The change in the metabolic profiles monitored over time allowed the pistachio development to be investigated. Specific temporal trends of amino acids, sugars, organic acids and other metabolites were observed and analysed by multivariate Partial Least Squares (PLS) analysis. Statistical analysis showed that while in the period from May to September there were few differences between the two cultivars, the ripening rate was different.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metaboloma/fisiologia , Pistacia/fisiologia , Aminoácidos/análise , Metabolismo dos Carboidratos , Carboidratos/análise , Metabolômica/métodos , Monitorização Fisiológica/métodos , Pistacia/química
10.
J Clin Gastroenterol ; 50 Suppl 1: S9-S12, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27622378

RESUMO

GOAL: The aim of this study was to assess fecal microbiota and metabolome in a population with symptomatic uncomplicated diverticular disease (SUDD). BACKGROUND: Whether intestinal microbiota and metabolic profiling may be altered in patients with SUDD is unknown. PATIENTS AND METHODS: Stool samples from 44 consecutive women [15 patients with SUDD, 13 with asymptomatic diverticulosis (AD), and 16 healthy controls (HCs)] were analyzed. Real-time polymerase chain reaction was used to quantify targeted microorganisms. High-resolution proton nuclear magnetic resonance spectroscopy associated with multivariate analysis with partial least-square discriminant analysis (PLS-DA) was applied on the metabolite data set. RESULTS: The overall bacterial quantity did not differ among the 3 groups (P=0.449), with no difference in Bacteroides/Prevotella, Clostridium coccoides, Bifidobacterium, Lactobacillus, and Escherichia coli subgroups. The amount of Akkermansia muciniphila species was significantly different between HC, AD, and SUDD subjects (P=0.017). PLS-DA analysis of nuclear magnetic resonance -based metabolomics associated with microbiological data showed significant discrimination between HCs and AD patients (R=0.733; Q=0.383; P<0.05, LV=2). PLS analysis showed lower N-acetyl compound and isovalerate levels in AD, associated with higher levels of A. municiphila, as compared with the HC group. PLS-DA applied on AD and SUDD samples showed a good discrimination between these 2 groups (R=0.69; Q=0.35; LV=2). SUDD patients were characterized by low levels of valerate, butyrate, and choline and by high levels of N-acetyl derivatives and U1. CONCLUSIONS: SUDD and AD do not show colonic bacterial overgrowth, but a significant difference in the levels of fecal A. muciniphila was observed. Moreover, increasing expression of some metabolites as expression of different AD and SUDD metabolic activity was found.


Assuntos
Diverticulose Cólica/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Metaboloma , Microbiota , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
11.
J Agric Food Chem ; 64(25): 5284-91, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27281439

RESUMO

Carrots are usually consumed in their native form or processed into many different products. Carrot juice is a popular beverage consumed throughout the world and is attracting increasing attention due to its nutritional value, being a natural source of bioactive compounds. Ready-to-drink carrot juices produced in the same factory were analyzed by (1)H nuclear magnetic resonance (NMR) spectroscopy. The juices were made from carrot roots of the same cultivar grown in three different geographical areas in Italy. More than 30 compounds have been identified and quantified, and the data was subjected to univariate ANOVA and multivariate analyses. Clear geographical-dependent clustering was observed, and the metabolic profiles were related to the different pedoclimatic conditions. The proposed phytoprofiling approach could be employed on an industrial scale to evaluate finished products involving different sites of supply of the raw material, thus improving both the quality and uniformity of the juices.


Assuntos
Daucus carota/química , Sucos de Frutas e Vegetais/análise , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Manipulação de Alimentos , Itália , Controle de Qualidade
12.
J Agric Food Chem ; 63(37): 8339-47, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26345382

RESUMO

Apple scab, caused by the fungus Venturia inaequalis, is the most serious disease of the apple worldwide. Two cultivars (Malus domestica), having different degrees of resistance against fungi attacks, were analyzed by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. Aqueous and organic extracts of both apple flesh and skin were studied, and over 30 metabolites, classified as organic acids, amino acids, carbohydrates, phenolic compounds, lipids, sterols, and other metabolites, were quantified by means of one-dimensional (1D) and two-dimensional (2D) NMR experiments. The metabolic profiles of the two apple cultivars were compared, and the differences were correlated with the different degrees of resistance to apple scab by means of univariate analysis. Levels of metabolites with known antifungal activity were observed not only to be higher in the Almagold cultivar but also to show different correlation patterns in comparison to Golden Delicious, implying a difference in the metabolic network involved in their biosynthesis.


Assuntos
Ascomicetos , Resistência à Doença , Frutas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Malus/microbiologia , Doenças das Plantas/microbiologia , Carboidratos/análise , Frutas/química , Frutas/microbiologia , Lipídeos/análise , Malus/metabolismo , Metaboloma , Fenóis/análise , Especificidade da Espécie
13.
PLoS One ; 10(9): e0137347, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332837

RESUMO

The colonization and development of gut microbiota immediately after birth is highly variable and depends on several factors, such as delivery mode and modality of feeding during the first months of life. A cohort of 31 mother and neonate pairs, including 25 at-term caesarean (CS) and 6 vaginally (V) delivered neonates (DNs), were included in this study and 121 meconium/faecal samples were collected at days 1 through 30 following birth. Operational taxonomic units (OTUs) were assessed in 69 stool samples by phylogenetic microarray HITChip and inter- and intra-individual distributions were established by inter-OTUs correlation matrices and OTUs co-occurrence or co-exclusion networks. 1H-NMR metabolites were determined in 70 stool samples, PCA analysis was performed on 55 CS DNs samples, and metabolome/OTUs co-correlations were assessed in 45 CS samples, providing an integrated map of the early microbiota OTUs-metabolome. A microbiota "core" of OTUs was identified that was independent of delivery mode and lactation stage, suggesting highly specialized communities that act as seminal colonizers of microbial networks. Correlations among OTUs, metabolites, and OTUs-metabolites revealed metabolic profiles associated with early microbial ecological dynamics, maturation of milk components, and host physiology.


Assuntos
Intestinos/microbiologia , Microbiota , Filogenia , Humanos , Recém-Nascido , Espectroscopia de Ressonância Magnética
14.
Exp Gerontol ; 49: 5-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24184118

RESUMO

BACKGROUND: Aging is characterized by derangements in multiple metabolic pathways that progressively constrict the homeostatic reserve (homeostenosis). The signature of metabolic alterations that accompany aging can be retrieved through the metabolomic profiling of biological fluids. OBJECTIVE: To characterize the age-related changes in urinary and fecal metabolic profiles of BALB/c mice through a (1)H nuclear magnetic resonance (NMR)-based metabolomic approach. METHODS: Young (n=19) and old (n=13) male BALB/c mice were fed ad libitum standard laboratory chow. Twenty four-hour feces and urine were collected using metabolic cages and analyzed by high-resolution (1)H NMR spectroscopy combined with multivariate statistical analyses. RESULTS: An age-related metabolic phenotype was detected both in urine and feces. The metabolic signature of aging consisted of changes in levels of metabolites associated with amino acid metabolism, tricarboxylic acid cycle, tryptophan-nicotinamide adenine dinucleotide pathway, and host-microbiota metabolic axis. CONCLUSIONS: Our (1)H NMR-based metabolomic approach was able to characterize the effect of age on urinary and fecal metabotypes. The implementation of this analytical strategy may increase our understanding of the metabolic alterations involved in the aging process and assist in the design of anti-aging interventions.


Assuntos
Envelhecimento/metabolismo , Fezes/química , Metaboloma/fisiologia , Envelhecimento/urina , Animais , Biomarcadores/metabolismo , Biomarcadores/urina , Espectroscopia de Ressonância Magnética/métodos , Masculino , Redes e Vias Metabólicas/fisiologia , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos BALB C , Urinálise/métodos
15.
Nat Prod Res ; 28(2): 95-101, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24079341

RESUMO

Breast milk is a complex fluid evolutionarily adapted to satisfy the nutritional requirements of growing infants. In addition, milk biochemical and immunological components protect newborns against infective agents in the new environment. Human milk oligosaccharides, the third most abundant component of breast milk, are believed to modulate the microbiota composition, thus influencing a wide range of physiological processes of the infant. Human milk also contains a number of other bioactive compounds, the functional role of which has not yet been clearly elucidated. In this scenario, NMR-based metabolic profiling can provide a rapid characterisation of breast milk composition, thus allowing a better understanding of its nutritional properties.


Assuntos
Metabolômica , Leite Humano/química , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/análise , Animais , Feminino , Humanos , Recém-Nascido , Itália , Gravidez
16.
J Nutr ; 143(10): 1549-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23946343

RESUMO

Age-related dysbioses of intestinal microbiota and decline in the overall metabolic homeostasis are frequently found in the elderly. Probiotic supplementation may represent a way to prevent or reduce the senescence-associated metabolic disorders. The present study evaluated the metabolic impact of Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 supplementation in relation to age by analyzing urine and feces metabolic profiles using (1)H-nuclear magnetic resonance spectroscopy and multivariate analysis. Adult (3 mo old) and aged (16 mo old) mice received an oral supplementation of the 2 probiotics (1 × 10(9) colony-forming units/d each) or phosphate buffered saline (control) daily for 30 d. Urine and feces were collected for 48 h before the end of the study. Partial least squares-discriminant analysis showed that the urinary discriminant metabolites for the probiotic treatment included higher dimethylglycine in adult and aged mice, lower sarcosine and nicotinate in adult mice, higher N-methylnicotinamide in adult mice and lower N-methylnicotinamide in aged mice compared with their controls. These results indicate a probiotic-induced modulation of homocysteine and NAD metabolism pathways, which have important implications because these pathways are involved in essential cellular processes that can be altered in senescence. The probiotic supplementation also modified the fecal metabolic profiles, inducing in both adult and aged mice higher 4-hydroxyphenylacetate and lower xylose in treated mice compared with their control mice, whereas valerate was greater in treated adult mice and lower in treated aged mice compared with their controls. The ANOVA simultaneous component analysis on urinary and fecal metabolic profiling showed an age × treatment interaction (P < 0.05), confirming the age-related modulation of the metabolic response to probiotic supplementation. The results suggest that L. acidophilus and B. lactis may prevent or reduce age-related metabolic dysfunction.


Assuntos
Envelhecimento/metabolismo , Bifidobacterium , Intestinos/microbiologia , Lactobacillus acidophilus , Metaboloma , Probióticos , Fatores Etários , Envelhecimento/urina , Animais , Fezes , Homocisteína/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos BALB C , NAD/metabolismo , Niacina/urina , Niacinamida/análogos & derivados , Niacinamida/urina , Ácidos Pentanoicos/metabolismo , Fenilacetatos/metabolismo , Sarcosina/análogos & derivados , Sarcosina/urina , Xilose/metabolismo
17.
J Agric Food Chem ; 61(8): 1727-40, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23083310

RESUMO

The metabolic profiling of aqueous extracts of Zespri Gold ( Actinidia chinensis ) and CI.GI (a controlled crossbreed from different species of Actinidia deliciosa ) kiwifruits and the water state of the outer pericarp of entire fruits were monitored over the season by means of high-field NMR spectroscopy and T(2) relaxation time measurements, respectively, and compared with the corresponding ones of Hayward kiwifruits previously investigated. A more complete assignment of the (1)H spectrum with respect to that obtained previously was reported: histidine, phenylalanine, quercetin 3-rhamnoside, and epicatechin were identified. Metabolic profiling confirmed Zespri's earlier maturation compared with the two other varieties. The water state of entire kiwifruits was measured nondestructively on fruits attached to the plants or detached from the plants. T(2) relaxation times were found to be sensitive to the kiwifruit developmental stage.


Assuntos
Actinidia/metabolismo , Frutas/química , Actinidia/química , Actinidia/classificação , Actinidia/crescimento & desenvolvimento , Frutas/classificação , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Hibridização Genética , Espectroscopia de Ressonância Magnética , Metaboloma
18.
J Sci Food Agric ; 92(14): 2913-22, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22488588

RESUMO

BACKGROUND: Studies on health effects of organic (ORG) products are still limited and often contradictory. We have investigated the impact of ORG and conventional (CV) carrots from two consecutive harvest years on mouse peripheral and intestinal immunity. RESULTS: Danish carrots (Bolero variety) were grown in three ORG (O1, O2 and O3) and one CV cropping system (D-CV). Italian carrots (Maestro and Excelso varieties) were grown in one ORG and one CV field for each variety. Immune phenotypes of blood, spleen and intestinal lymphocytes, and cytokine serum levels were analyzed in mice fed the different carrots for 30 days. Principal component analysis (PCA) was performed in mice fed the Danish carrots. The consumption of the 'more organic' O2 and O3 carrots induced some changes in lymphocyte populations, including an increase in regulatory T cells. In Italian carrots more differences between ORG and CV were observed in the first as compared to the second year. No relevant differences were observed in cytokine secretion. PCA showed a clear separation among mice fed the O1, O2, O3 and D-CV carrots. CONCLUSIONS: Although a great variability was observed between the two years, an immune stimulation was found after the ORG carrot consumption.


Assuntos
Daucus carota/crescimento & desenvolvimento , Alimentos Orgânicos , Imunidade Celular , Imunidade nas Mucosas , Imunomodulação , Intestinos/imunologia , Raízes de Plantas/crescimento & desenvolvimento , Animais , Colo/citologia , Colo/imunologia , Produtos Agrícolas/crescimento & desenvolvimento , Citocinas/sangue , Citocinas/metabolismo , Dinamarca , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Itália , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Reprodutibilidade dos Testes , Baço/citologia , Baço/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
19.
PLoS One ; 7(2): e32829, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22389725

RESUMO

BACKGROUND: Preclinical studies strongly suggest that accelerated apoptosis in skeletal myocytes may be involved in the pathogenesis of sarcopenia. However, evidence in humans is sparse. In the present study, we investigated whether apoptotic signaling in the skeletal muscle was associated with indices of muscle mass and function in older persons. METHODOLOGY/PRINCIPAL FINDINGS: Community-dwelling older adults were categorized into high-functioning (HF) or low-functioning (LF) groups according to their short physical performance battery (SPPB) summary score. Participants underwent an isokinetic knee extensor strength test and 3-dimensional magnetic resonance imaging of the thigh. Vastus lateralis muscle samples were obtained by percutaneous needle biopsy and assayed for the expression of a set of apoptotic signaling proteins. Age, sex, number of comorbid conditions and medications as well as knee extensor strength were not different between groups. HF participants displayed greater thigh muscle volume compared with LF persons. Multivariate partial least squares (PLS) regressions showed significant correlations between caspase-dependent apoptotic signaling proteins and the muscular percentage of thigh volume (R(2) = 0.78; Q(2) = 0.61) as well as gait speed (R(2) = 0.81; Q(2) = 0.56). Significant variables in the PLS model of percent muscle volume were active caspase-8, cleaved caspase-3, cytosolic cytochrome c and mitochondrial Bak. The regression model of gait speed was mainly described by cleaved caspase-3 and mitochondrial Bax and Bak. PLS predictive apoptotic variables did not differ between functional groups. No correlation was determined between apoptotic signaling proteins and muscle strength or quality (strength per unit volume). CONCLUSIONS/SIGNIFICANCE: Data from this exploratory study show for the first time that apoptotic signaling is correlated with indices of muscle mass and function in a cohort of community-dwelling older persons. Future larger-scale studies are needed to corroborate these preliminary findings and determine if down-regulation of apoptotic signaling in skeletal myocytes will provide improvements in the muscle mass and functional status of older persons.


Assuntos
Marcha/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Immunoblotting , Imageamento por Ressonância Magnética , Masculino , Força Muscular/fisiologia
20.
J Am Coll Nutr ; 28(5): 553-64, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20439551

RESUMO

OBJECTIVE: The aim of this study is to evaluate the systemic effects of an isotonic sports drink on the metabolic status of athletes of the Italian Olympic rowing team during recovery after strenuous and prolonged physical exercise by means of nuclear magnetic resonance (NMR)-based metabolomics analysis on plasma and urine. METHODS: Forty-four male athletes of the Italian Olympic rowing team were enrolled in a double-blind crossover study. All subjects underwent 2 evaluations at 1-week intervals. The evaluation was performed on a rowing ergometer after strenuous physical exercise to produce a state of dehydration. Afterward, the athletes were rehydrated either with a green tea-based carbohydrate-hydroelectrolyte drink or with oligomineral water. Three blood samples were drawn for each subject: at rest, after the exercise, and following rehydratation, while 2 urine samples were collected: at rest and after the rehydratation period. Biofluid samples were analyzed by high-resolution (1)H NMR metabolic profiling combined with multilevel simultaneous data-analysis (MSCA) and partial-least squares-discriminant analysis (PLS-DA). RESULTS: The between-subject variations, as evaluated by MSCA, reflected the variations of lactate levels induced by the physical exercise. Analysis of the within-individual variance using multilevel PLS-DA models of plasma and urine metabolic profiles showed an effect of the green tea-based sports drink on glucose, citrate, and lactate levels in plasma and on acetone, 3-OH-butyrate, and lactate levels in urine. The increase of caffeine and hippuric acid levels in urine indicated the absorption of green tea extract components. CONCLUSIONS: NMR-based metabolomics allowed the complex effects of a green tea extract-based carbohydrate/hydroelectrolyte beverage on the energy metabolism of athletes during recovery by postexercise rehydration to be evaluated.


Assuntos
Atletas , Carboidratos da Dieta/administração & dosagem , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Soluções Isotônicas/administração & dosagem , Adolescente , Adulto , Análise de Variância , Estudos Cross-Over , Método Duplo-Cego , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Resistência Física/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA